Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Applied soft computing

COVID-19 spreads and contracts people rapidly, to diagnose this disease accurately and timely is essential for quarantine and medical treatment. RT-PCR plays a crucial role in diagnosing the COVID-19, whereas computed tomography (CT) delivers a faster result when combining artificial assistance. Developing a Deep Learning classification model for detecting the COVID-19 through CT images is conducive to assisting doctors in consultation. We proposed a feature complement fusion network (FCF) for detecting COVID-19 through lung CT scan images. This framework can extract both local features and global features by CNN extractor and ViT extractor severally, which successfully complement the deficiency problem of the receptive field of the other. Due to the attention mechanism in our designed feature complement Transformer (FCT), extracted local and global feature embeddings achieve a better representation. We combined a supervised with a weakly supervised strategy to train our model, which can promote CNN to guide the VIT to converge faster. Finally, we got a 99.34% accuracy on our test set, which surpasses the current state-of-art popular classification model. Moreover, this proposed structure can easily extend to other classification tasks when changing other proper extractors.

Liang Shu, Nie Rencan, Cao Jinde, Wang Xue, Zhang Gucheng


COVID-19 detecting, Deep Learning, Feature complement fusion, Weakly supervised learning