Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

ArXiv Preprint

While electronic health records are a rich data source for biomedical research, these systems are not implemented uniformly across healthcare settings and significant data may be missing due to healthcare fragmentation and lack of interoperability between siloed electronic health records. Considering that the deletion of cases with missing data may introduce severe bias in the subsequent analysis, several authors prefer applying a multiple imputation strategy to recover the missing information. Unfortunately, although several literature works have documented promising results by using any of the different multiple imputation algorithms that are now freely available for research, there is no consensus on which MI algorithm works best. Beside the choice of the MI strategy, the choice of the imputation algorithm and its application settings are also both crucial and challenging. In this paper, inspired by the seminal works of Rubin and van Buuren, we propose a methodological framework that may be applied to evaluate and compare several multiple imputation techniques, with the aim to choose the most valid for computing inferences in a clinical research work. Our framework has been applied to validate, and extend on a larger cohort, the results we presented in a previous literature study, where we evaluated the influence of crucial patients' descriptors and COVID-19 severity in patients with type 2 diabetes mellitus whose data is provided by the National COVID Cohort Collaborative Enclave.

Elena Casiraghi, Rachel Wong, Margaret Hall, Ben Coleman, Marco Notaro, Michael D. Evans, Jena S. Tronieri, Hannah Blau, Bryan Laraway, Tiffany J. Callahan, Lauren E. Chan, Carolyn T. Bramante, John B. Buse, Richard A. Moffitt, Til Sturmer, Steven G. Johnson, Yu Raymond Shao, Justin Reese, Peter N. Robinson, Alberto Paccanaro, Giorgio Valentini, Jared D. Huling, Kenneth Wilkins, :, Tell Bennet, Christopher Chute, Peter DeWitt, Kenneth Gersing, Andrew Girvin, Melissa Haendel, Jeremy Harper, Janos Hajagos, Stephanie Hong, Emily Pfaff, Jane Reusch, Corneliu Antoniescu, Kimberly Robaski