ArXiv Preprint
Considering uncertainty estimation of modern neural networks (NNs) is one of
the most important steps towards deploying machine learning systems to
meaningful real-world applications such as in medicine, finance or autonomous
systems. At the moment, ensembles of different NNs constitute the
state-of-the-art in both accuracy and uncertainty estimation in different
tasks. However, ensembles of NNs are unpractical under real-world constraints,
since their computation and memory consumption scale linearly with the size of
the ensemble, which increase their latency and deployment cost. In this work,
we examine a simple regularisation approach for distribution-free knowledge
distillation of ensemble of machine learning models into a single NN. The aim
of the regularisation is to preserve the diversity, accuracy and uncertainty
estimation characteristics of the original ensemble without any intricacies,
such as fine-tuning. We demonstrate the generality of the approach on
combinations of toy data, SVHN/CIFAR-10, simple to complex NN architectures and
different tasks.
Martin Ferianc, Miguel Rodrigues
2022-05-19