Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Computers & electrical engineering : an international journal

In the wake of the COVID-19 outbreak, automated disease detection has become a crucial part of medical science given the infectious nature of the coronavirus. This research aims to introduce a deep ensemble framework of transfer learning models for early prediction of COVID-19 from the respective chest X-ray images of the patients. The dataset used in this research was taken from the Kaggle repository having two classes- COVID-19 Positive and COVID-19 Negative. The proposed model achieved high accuracy on the test sample with minimum false positive prediction. It can assist doctors and technicians with early detection of COVID-19 infection. The patient's health can further be monitored remotely with the help of connected devices with the Internet, which may be termed as the Internet of Medical Things (IoMT). The proposed IoMT-based solution for the automatic detection of COVID-19 can be a significant step toward fighting the pandemic.

Roy Pradeep Kumar, Kumar Abhinav


Classification, Convolutional Neural Network, Deep Learning, Ensemble learning, IoMT, Transfer learning