Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In International journal of applied earth observation and geoinformation : ITC journal

The COVID-19 pandemic has led public health departments to issue several orders and recommendations to reduce COVID-19-related morbidity and mortality. However, for various reasons, including lack of ability to sufficiently monitor and influence behavior change, adherence to these health orders and recommendations has been suboptimal. Starting April 29, 2020, during the initial stay-at-home orders issued by various state governors, we conducted an intervention that sent online website and mobile application advertisements to people's mobile phones to encourage them to adhere to stay-at-home orders. Adherence to stay-at-home orders was monitored using individual-level cell phone mobility data, from April 29, 2020 through May 10, 2020. Mobile devices across 5 regions in the United States were randomly-assigned to either receive advertisements from our research team advising them to stay at home to stay safe (intervention group) or standard advertisements from other advertisers (control group). Compared to control group devices that received only standard corporate advertisements (i.e., did not receive public health advertisements to stay at home), the (intervention group) devices that received public health advertisements to stay at home demonstrated objectively-measured increased adherence to stay at home (i.e., smaller radius of gyration, average travel distance, and larger stay-at-home ratios). Results suggest that 1) it is feasible to use mobility data to assess efficacy of an online advertising intervention, and 2) online advertisements are a potentially effective method for increasing adherence to government/public health stay-at-home orders.

Garett Renee R, Yang Jiannan, Zhang Qingpeng, Young Sean D


Artificial intelligence, COVID-19, Digital health, Intervention, Mobility