Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In PloS one ; h5-index 176.0

BACKGROUND : The SARS-CoV-2 pandemic began in early 2020, paralyzing human life all over the world and threatening our security. Thus, the need for an effective, novel approach to diagnosing, preventing, and treating COVID-19 infections became paramount.

METHODS : This article proposes a machine learning-based method for the classification of chest X-ray images. We also examined some of the pre-processing methods such as thresholding, blurring, and histogram equalization.

RESULTS : We found the F1-score results rose to 97%, 96%, and 99% for the three analyzed classes: healthy, COVID-19, and pneumonia, respectively.

CONCLUSION : Our research provides proof that machine learning can be used to support medics in chest X-ray classification and improving pre-processing leads to improvements in accuracy, precision, recall, and F1-scores.

Giełczyk Agata, Marciniak Anna, Tarczewska Martyna, Lutowski Zbigniew