Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In SN computer science

As the number of COVID-19 cases increases day by day, the situation and livelihood of people throughout the world deteriorates. The goal of this study is to use machine learning models to identify disease and forecast whether or not a person is infected with the virus or another common illness. More articles about COVID-19 will be released starting in 2020, but we still do not have a reliable prediction mechanism to diagnose the disease with 100% accuracy. This comparison is done to see which model is the most effective in detecting and predicting disease. Despite the fact that we have immunizations, we require a best-prediction strategy to assist all humans in surviving. Researchers claimed that the supervised learning method predicts more accurately than the unsupervised learning method in the majority of studies. Supervised learning is the process of mapping inputs to derived outputs using a set of variables and created functions. This will also help us to optimize performance criteria using experience. It is further divided into two categories: classification and regression. According to recent studies, classification models are more accurate than other models.

Abirami R Sudha, Kumar G Suresh


Classification, Coronavirus disease (COVID-19), Machine learning, Regression, Supervised, Unsupervised