Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Methods in molecular biology (Clifton, N.J.)

Reverse vaccinology (RV) is the state-of-the-art vaccine development strategy that starts with predicting vaccine antigens by bioinformatics analysis of the whole genome of a pathogen of interest. Vaxign is the first web-based RV vaccine prediction method based on calculating and filtering different criteria of proteins. Vaxign-ML is a new Vaxign machine learning (ML) method that predicts vaccine antigens based on extreme gradient boosting with the advance of new technologies and cumulation of protective antigen data. Using a benchmark dataset, Vaxign-ML showed superior performance in comparison to existing open-source RV tools. Vaxign-ML is also implemented within the web-based Vaxign platform to support easy and intuitive access. Vaxign-ML is also available as a command-based software package for more advanced and customizable vaccine antigen prediction. Both Vaxign and Vaxign-ML have been applied to predict SARS-CoV-2 (cause of COVID-19) and Brucella vaccine antigens to demonstrate the integrative approach to analyze and select vaccine candidates using the Vaxign platform.

Ong Edison, He Yongqun


Antigen, Machine learning, Reverse vaccinology, Vaccine, Vaxign, Vaxign-ML, Vaxitop