Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Journal of proteome research

RT-PCR is the primary method to diagnose COVID-19 and is also used to monitor the disease course. This approach, however, suffers from false negatives due to RNA instability and poses a high risk to medical practitioners. Here, we investigated the potential of using serum proteomics to predict viral nucleic acid positivity during COVID-19. We analyzed the proteome of 275 inactivated serum samples from 54 out of 144 COVID-19 patients and shortlisted 42 regulated proteins in the severe group and 12 in the non-severe group. Using these regulated proteins and several key clinical indexes, including days after symptoms onset, platelet counts, and magnesium, we developed two machine learning models to predict nucleic acid positivity, with an AUC of 0.94 in severe cases and 0.89 in non-severe cases, respectively. Our data suggest the potential of using a serum protein-based machine learning model to monitor COVID-19 progression, thus complementing swab RT-PCR tests. More efforts are required to promote this approach into clinical practice since mass spectrometry-based protein measurement is not currently widely accessible in clinic.

Zhang Ying, Cai Xue, Ge Weigang, Wang Donglian, Zhu Guangjun, Qian Liujia, Xiang Nan, Yue Liang, Liang Shuang, Zhang Fangfei, Wang Jing, Zhou Kai, Zheng Yufen, Lin Minjie, Sun Tong, Lu Ruyue, Zhang Chao, Xu Luang, Sun Yaoting, Zhou Xiaoxu, Yu Jing, Lyu Mengge, Shen Bo, Zhu Hongguo, Xu Jiaqin, Zhu Yi, Guo Tiannan


COVID-19, disease course monitoring, machine learning, proteomics, serum