Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In PloS one ; h5-index 176.0

Ali-M3, an artificial intelligence program, analyzes chest computed tomography (CT) and detects the likelihood of coronavirus disease (COVID-19) based on scores ranging from 0 to 1. However, Ali-M3 has not been externally validated. Our aim was to evaluate the accuracy of Ali-M3 for detecting COVID-19 and discuss its clinical value. We evaluated the external validity of Ali-M3 using sequential Japanese sampling data. In this retrospective cohort study, COVID-19 infection probabilities for 617 symptomatic patients were determined using Ali-M3. In 11 Japanese tertiary care facilities, these patients underwent reverse transcription-polymerase chain reaction (RT-PCR) testing. They also underwent chest CT to confirm a diagnosis of COVID-19. Of the 617 patients, 289 (46.8%) were RT-PCR-positive. The area under the curve (AUC) of Ali-M3 for predicting a COVID-19 diagnosis was 0.797 (95% confidence interval: 0.762‒0.833) and the goodness-of-fit was P = 0.156. With a cut-off probability of a diagnosis of COVID-19 by Ali-M3 set at 0.5, the sensitivity and specificity were 80.6% and 68.3%, respectively. A cut-off of 0.2 yielded a sensitivity and specificity of 89.2% and 43.2%, respectively. Among the 223 patients who required oxygen, the AUC was 0.825. Sensitivity at a cut-off of 0.5% and 0.2% was 88.7% and 97.9%, respectively. Although the sensitivity was lower when the days from symptom onset were fewer, the sensitivity increased for both cut-off values after 5 days. We evaluated Ali-M3 using external validation with symptomatic patient data from Japanese tertiary care facilities. As Ali-M3 showed sufficient sensitivity performance, despite a lower specificity performance, Ali-M3 could be useful in excluding a diagnosis of COVID-19.

Ikenoue Tatsuyoshi, Kataoka Yuki, Matsuoka Yoshinori, Matsumoto Junichi, Kumasawa Junji, Tochitatni Kentaro, Funakoshi Hiraku, Hosoda Tomohiro, Kugimiya Aiko, Shirano Michinori, Hamabe Fumiko, Iwata Sachiyo, Fukuma Shingo