Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In SN computer science

The COVID-19 pandemic creates a significant impact on everyone's life. One of the fundamental movements to cope with this challenge is identifying the COVID-19-affected patients as early as possible. In this paper, we classified COVID-19, Pneumonia, and Healthy cases from the chest X-ray images by applying the transfer learning approach on the pre-trained VGG-19 architecture. We use MongoDB as a database to store the original image and corresponding category. The analysis is performed on a public dataset of 3797 X-ray images, among them COVID-19 affected (1184 images), Pneumonia affected (1294 images), and Healthy (1319 images) (https://www.kaggle.com/tawsifurrahman/covid19-radiography-database/version/3). This research gained an accuracy of 97.11%, average precision of 97%, and average Recall of 97% on the test dataset.

Chakraborty Soarov, Paul Shourav, Hasan K M Azharul

2022

COVID-19, Deep learning, MongoDB, Pneumonia, Transfer learning