Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Oncotarget ; h5-index 104.0

Lymphovascular invasion (LVI) is an important prognostic indicator of lymph node metastasis and disease aggressiveness but clear molecular mechanisms mediating this in head and neck cancers (HNSC) remain undefined. To identify important microRNAs (miRNAs) in HNSC that associate with and are also predictive of increased risk of LVI, we used a combination of clustering algorithms, multiple regression analyses and machine learning approaches and analyzed miRNA expression profiles in the TCGA HNSC database. As the first step, we identified miRNAs with increased association with LVI as a binary variable. In order to determine whether the identified miRNAs would show functional clusters that are also indicative of increased risk for LVI, we carried out unsupervised as well as supervised clustering. Our results identified distinct clusters of miRNAs that are predictive of increased LVI. We further refined these findings using a Random forest approach, and miR-203a-3p, mir-10a-5p, and miR-194-5p to be most strongly associated with LVI. Pathway enrichment analysis showed these miRNAs targeted genes involved in Hippo signaling and fatty acid oxidation pathways that are mediators of lymph node metastasis. Specific association was also identified between the miRNAs associated with LVI and expression of several lymphangiogenic genes that could be critical for determination of therapeutic strategies.

Karmakar Moumita, Lai Pei-Chun, Sinha Samiran, Glaser Shannon, Chakraborty Sanjukta


TCGA, head neck cancer, miRNA, random forest, supervised clustering