Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In ACS nano ; h5-index 203.0

The increasing population of the elderly and motion-impaired people brings a huge challenge to our social system. However, the walking stick as their essential tool has rarely been investigated into its potential capabilities beyond basic physical support, such as activity monitoring, tracing, and accident alert. Here, we report a walking stick powered by ultra-low-frequency human motion and equipped with deep-learning-enabled advanced sensing features to provide a healthcare-monitoring platform for motion-impaired users. A linear-to-rotary structure is designed to achieve highly efficient energy harvesting from the linear motion of a walking stick with ultralow frequency. Besides, two kinds of self-powered triboelectric sensors are proposed and integrated to extract the motion features of the walking stick. Augmented sensing functionalities with high accuracies have been enabled by deep-learning-based data analysis, including identity recognition, disability evaluation, and motion status distinguishing. Furthermore, a self-sustainable Internet of Things (IoT) system with global positioning system tracing and environmental temperature and humidity amenity sensing functions is obtained. Combined with the aforementioned functionalities, this walking stick is demonstrated in various usage scenarios as a caregiver for real-time well-being status and activity monitoring. The caregiving walking stick shows the potential of being an intelligent aid for motion-impaired users to help them live life with adequate autonomy and safety.

Guo Xinge, He Tianyiyi, Zhang Zixuan, Luo Anxin, Wang Fei, Ng Eldwin J, Zhu Yao, Liu Huicong, Lee Chengkuo

2021-Jul-26

Internet of Things, artificial intelligence, energy harvesting, triboelectric, walking stick