Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Patterns (New York, N.Y.)

Most of the knowledge in materials science literature is in the form of unstructured data such as text and images. Here, we present a framework employing natural language processing, which automates text and image comprehension and precision knowledge extraction from inorganic glasses' literature. The abstracts are automatically categorized using latent Dirichlet allocation (LDA) to classify and search semantically linked publications. Similarly, a comprehensive summary of images and plots is presented using the caption cluster plot (CCP), providing direct access to images buried in the papers. Finally, we combine the LDA and CCP with chemical elements to present an elemental map, a topical and image-wise distribution of elements occurring in the literature. Overall, the framework presented here can be a generic and powerful tool to extract and disseminate material-specific information on composition-structure-processing-property dataspaces, allowing insights into fundamental problems relevant to the materials science community and accelerated materials discovery.

Venugopal Vineeth, Sahoo Sourav, Zaki Mohd, Agarwal Manish, Gosvami Nitya Nand, Krishnan N M Anoop


artificial intelligence, glass science, knowledge discovery, materials science, natural language processing