Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In PLoS computational biology

The large amount of biological data available in the current times, makes it necessary to use tools and applications based on sophisticated and efficient algorithms, developed in the area of bioinformatics. Further, access to high performance computing resources is necessary, to achieve results in reasonable time. To speed up applications and utilize available compute resources as efficient as possible, software developers make use of parallelization mechanisms, like multithreading. Many of the available tools in bioinformatics offer multithreading capabilities, but more compute power is not always helpful. In this study we investigated the behavior of well-known applications in bioinformatics, regarding their performance in the terms of scaling, different virtual environments and different datasets with our benchmarking tool suite BOOTABLE. The tool suite includes the tools BBMap, Bowtie2, BWA, Velvet, IDBA, SPAdes, Clustal Omega, MAFFT, SINA and GROMACS. In addition we added an application using the machine learning framework TensorFlow. Machine learning is not directly part of bioinformatics but applied to many biological problems, especially in the context of medical images (X-ray photographs). The mentioned tools have been analyzed in two different virtual environments, a virtual machine environment based on the OpenStack cloud software and in a Docker environment. The gained performance values were compared to a bare-metal setup and among each other. The study reveals, that the used virtual environments produce an overhead in the range of seven to twenty-five percent compared to the bare-metal environment. The scaling measurements showed, that some of the analyzed tools do not benefit from using larger amounts of computing resources, whereas others showed an almost linear scaling behavior. The findings of this study have been generalized as far as possible and should help users to find the best amount of resources for their analysis. Further, the results provide valuable information for resource providers to handle their resources as efficiently as possible and raise the user community's awareness of the efficient usage of computing resources.

Hanussek Maximilian, Bartusch Felix, Kr├╝ger Jens