Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Molecular diversity

Neurological disorders affect various aspects of life. Finding drugs for the central nervous system is a very challenging and complex task due to the involvement of the blood-brain barrier, P-glycoprotein, and the drug's high attrition rates. The availability of big data present in online databases and resources has enabled the emergence of artificial intelligence techniques including machine learning to analyze, process the data, and predict the unknown data with high efficiency. The use of these modern techniques has revolutionized the whole drug development paradigm, with an unprecedented acceleration in the central nervous system drug discovery programs. Also, the new deep learning architectures proposed in many recent works have given a better understanding of how artificial intelligence can tackle big complex problems that arose due to central nervous system disorders. Therefore, the present review provides comprehensive and up-to-date information on machine learning/artificial intelligence-triggered effort in the brain care domain. In addition, a brief overview is presented on machine learning algorithms and their uses in structure-based drug design, ligand-based drug design, ADMET prediction, de novo drug design, and drug repurposing. Lastly, we conclude by discussing the major challenges and limitations posed and how they can be tackled in the future by using these modern machine learning/artificial intelligence approaches.

Kashyap Kushagra, Siddiqi Mohammad Imran


Artificial intelligence, Blood–brain barrier, CNS drug discovery, Deep learning, Machine learning, Neurological disorders