Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Frontiers in genetics ; h5-index 62.0

Electronic health records (EHRs) have been widely adopted in recent years, but often include a high proportion of missing data, which can create difficulties in implementing machine learning and other tools of personalized medicine. Completed datasets are preferred for a number of analysis methods, and successful imputation of missing EHR data can improve interpretation and increase our power to predict health outcomes. However, use of the most popular imputation methods mainly require scripting skills, and are implemented using various packages and syntax. Thus, the implementation of a full suite of methods is generally out of reach to all except experienced data scientists. Moreover, imputation is often considered as a separate exercise from exploratory data analysis, but should be considered as art of the data exploration process. We have created a new graphical tool, ImputEHR, that is based on a Python base and allows implementation of a range of simple and sophisticated (e.g., gradient-boosted tree-based and neural network) data imputation approaches. In addition to imputation, the tool enables data exploration for informed decision-making, as well as implementing machine learning prediction tools for response data selected by the user. Although the approach works for any missing data problem, the tool is primarily motivated by problems encountered for EHR and other biomedical data. We illustrate the tool using multiple real datasets, providing performance measures of imputation and downstream predictive analysis.

Zhou Yi-Hui, Saghapour Ehsan


decision trees, electronic health records, gradient boosting, imputation, prediction