Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Pain ; h5-index 71.0

Appropriate monitoring of opioid use in patients with pain conditions is paramount, yet it remains a very challenging task. The current work examined the use of a wearable sensor to detect self-administration of opioids after dental surgery using machine learning. Participants were recruited from an oral and maxillofacial surgery clinic. Participants were 46 adult patients (26 female) receiving opioids after dental surgery. Participants wore Empatica E4 sensors during the period they self-administered opioids. The E4 collected physiological parameters including accelerometer x-, y-, and z-axes, heart rate, and electrodermal activity. Four machine learning models provided validation accuracies greater than 80%, but the bagged-tree model provided the highest combination of validation accuracy (83.7%) and area under the receiver operating characteristic curve (0.92). The trained model had a validation sensitivity of 82%, a specificity of 85%, a positive predictive value of 85%, and a negative predictive value of 83%. A subsequent test of the trained model on withheld data had a sensitivity of 81%, a specificity of 88%, a positive predictive value of 87%, and a negative predictive value of 82%. Results from training and testing model of machine learning indicated that opioid self-administration could be identified with reasonable accuracy, leading to considerable possibilities of the use of wearable technology to advance prevention and treatment.

Salgado GarcĂ­a Francisco I, Indic Premananda, Stapp Joshua, Chintha Keerthi K, He Zhaomin, Brooks Jeffrey H, Carreiro Stephanie, Derefinko Karen J

2021-Jun-14