Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Annals of translational medicine

AI has, to varying degrees, affected all aspects of molecular imaging, from image acquisition to diagnosis. During the last decade, the advent of deep learning in particular has transformed medical image analysis. Although the majority of recent advances have resulted from neural-network models applied to image segmentation, a broad range of techniques has shown promise for image reconstruction, image synthesis, differential-diagnosis generation, and treatment guidance. Applications of AI for drug design indicate the way forward for using AI to facilitate molecular-probe design, which is still in its early stages. Deep-learning models have demonstrated increased efficiency and image quality for PET reconstruction from sinogram data. Generative adversarial networks (GANs), which are paired neural networks that are jointly trained to generate and classify images, have found applications in modality transformation, artifact reduction, and synthetic-PET-image generation. Some AI applications, based either partly or completely on neural-network approaches, have demonstrated superior differential-diagnosis generation relative to radiologists. However, AI models have a history of brittleness, and physicians and patients may not trust AI applications that cannot explain their reasoning. To date, the majority of molecular-imaging applications of AI have been confined to research projects, and are only beginning to find their ways into routine clinical workflows via commercialization and, in some cases, integration into scanner hardware. Evaluation of actual clinical products will yield more realistic assessments of AI's utility in molecular imaging.

Herskovits Edward H


Artificial intelligence (AI), deep learning, machine learning, nuclear medicine