Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Methods (San Diego, Calif.)

Hypertension can lead to changes in the brain structure and function, and different blood pressure levels (2017ACC/AHA) have different effects on brain structure. It is important to analyze these changes by machine learning methods, and various characteristics can provide rich information for the analysis of these changes. However, multiple feature extraction involves complex data processing. How to make a single feature achieve the same diagnosis effect as multiple features do is worth of study. Kernel ridge regression (KRR) is a kind of machine learning method, which shows faster learning speed and generalization ability in classification tasks. In order to knowledge transfer, we use privileged information (PI) to transfer information of multiple types of feature to single feature. This allows only one feature type to be used during the test stage. In the process of feature fusion, we need to consider all the samples' attribution making the classifier better. In this work, we propose a multi-kernel KRR+ framework based on self-paced learning to analyze the changes of the brain structure in patients with different blood pressure levels. Specifically, one kind of a feature is taken as main feature, and other features are input into the multi-kernel KRR as PI. These two inputs are fed into the final KRR classifier together. In addition, a self-paced learning method is introduced into sample selecting to avoid training the classifier using samples with a large loss value firstly, which improves the generalization performance of the classifier. Experimental results show that the proposed method can make full use of the information of various features and achieve better classification performance. This shows self-paced learning based KRR can help analyze brain structure of patients with different blood pressure levels. The discriminative features may help clinicians to make judgments of hypertension degrees on brain MRI images.

Peng Bo, Yu Xinying, Ma Xinwei, Xue Zeyu, Wang Jingyu, Cai Zhenlin, Pang Chunying, Zhu Jianbing, Dai Yakang


Hypertension, KRR, MRI, Privileged information, Self-paced learning