Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Bioinformatics (Oxford, England)

MOTIVATION : Automated function prediction (AFP) of proteins is a large-scale multi-label classification problem. Two limitations of most network-based methods for AFP are (i) a single model must be trained for each species and (ii) protein sequence information is totally ignored. These limitations cause weaker performance than sequence-based methods. Thus, the challenge is how to develop a powerful network-based method for AFP to overcome these limitations.

RESULTS : We propose DeepGraphGO, an end-to-end, multispecies graph neural network-based method for AFP, which makes the most of both protein sequence and high-order protein network information. Our multispecies strategy allows one single model to be trained for all species, indicating a larger number of training samples than existing methods. Extensive experiments with a large-scale dataset show that DeepGraphGO outperforms a number of competing state-of-the-art methods significantly, including DeepGOPlus and three representative network-based methods: GeneMANIA, deepNF and clusDCA. We further confirm the effectiveness of our multispecies strategy and the advantage of DeepGraphGO over so-called difficult proteins. Finally, we integrate DeepGraphGO into the state-of-the-art ensemble method, NetGO, as a component and achieve a further performance improvement.

AVAILABILITY AND IMPLEMENTATION : https://github.com/yourh/DeepGraphGO.

SUPPLEMENTARY INFORMATION : Supplementary data are available at Bioinformatics online.

You Ronghui, Yao Shuwei, Mamitsuka Hiroshi, Zhu Shanfeng

2021-Jul-12