Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In International journal of cardiology ; h5-index 68.0

The presence of left ventricular systolic dysfunction (LVSD) alters clinical management and prognosis in most acute and chronic cardiovascular conditions. While transthoracic echocardiography (TTE) remains the most common diagnostic tool to screen for LVSD, it is operator-dependent, time-consuming, effort-intensive, and relatively expensive. Recent work has demonstrated the ability of an artificial intelligence-augment ECG (AI-ECG) model to accurately predict LVSD in critical intensive care unit (CICU) patients. We demonstrate that the AI-ECG algorithm can maintain its performance in these patients with and without AF despite their clinical differences. An AI-ECG algorithm can serve as a non-invasive, inexpensive, and rapid screening tool for early detection of LVSD in resource-limited settings, and potentially expedite clinical decision making and guideline-directed therapies in the acute care setting.

Kashou Anthony H, Noseworthy Peter A, Lopez-Jimenez Francisco, Attia Zachi I, Kapa Suraj, Friedman Paul A, Jentzer Jacob C


Artificial intelligence, Atrial fibrillation, Cardiac intensive care unit, Echocardiography, Electrocardiogram, Left ventricular systolic dysfunction