Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Magnetic resonance in medicine ; h5-index 66.0

PURPOSE : To develop and evaluate a novel and generalizable super-resolution (SR) deep-learning framework for motion-compensated isotropic 3D coronary MR angiography (CMRA), which allows free-breathing acquisitions in less than a minute.

METHODS : Undersampled motion-corrected reconstructions have enabled free-breathing isotropic 3D CMRA in ~5-10 min acquisition times. In this work, we propose a deep-learning-based SR framework, combined with non-rigid respiratory motion compensation, to shorten the acquisition time to less than 1 min. A generative adversarial network (GAN) is proposed consisting of two cascaded Enhanced Deep Residual Network generator, a trainable discriminator, and a perceptual loss network. A 16-fold increase in spatial resolution is achieved by reconstructing a high-resolution (HR) isotropic CMRA (0.9 mm3 or 1.2 mm3 ) from a low-resolution (LR) anisotropic CMRA (0.9 × 3.6 × 3.6 mm3 or 1.2 × 4.8 × 4.8 mm3 ). The impact and generalization of the proposed SRGAN approach to different input resolutions and operation on image and patch-level is investigated. SRGAN was evaluated on a retrospective downsampled cohort of 50 patients and on 16 prospective patients that were scanned with LR-CMRA in ~50 s under free-breathing. Vessel sharpness and length of the coronary arteries from the SR-CMRA is compared against the HR-CMRA.

RESULTS : SR-CMRA showed statistically significant (P < .001) improved vessel sharpness 34.1% ± 12.3% and length 41.5% ± 8.1% compared with LR-CMRA. Good generalization to input resolution and image/patch-level processing was found. SR-CMRA enabled recovery of coronary stenosis similar to HR-CMRA with comparable qualitative performance.

CONCLUSION : The proposed SR-CMRA provides a 16-fold increase in spatial resolution with comparable image quality to HR-CMRA while reducing the predictable scan time to <1 min.

Küstner Thomas, Munoz Camila, Psenicny Alina, Bustin Aurelien, Fuin Niccolo, Qi Haikun, Neji Radhouene, Kunze Karl, Hajhosseiny Reza, Prieto Claudia, Botnar René

2021-Jul-09

3D whole-heart, coronary MR angiography, deep learning, super resolution