Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Multivariate behavioral research

Over the past 40 years there have been great advances in the analysis of individual change and the analyses of between-person differences in change. While conditional growth models are the dominant approach, exploratory models, such as growth mixture models and structural equation modeling trees, allow for greater flexibility in the modeling of between-person differences in change. We continue to push for greater flexibility in the modeling of individual change and its determinants by combining growth mixture modeling with structural equation modeling trees to evaluate how measured covariates predict class membership using a recursive partitioning algorithm. This approach, referred to as growth mixture modeling with membership trees, is illustrated with longitudinal reading data from the Early Childhood Longitudinal Study with the MplusTrees package in R.

Grimm Kevin J, Jacobucci Ross, Stegmann Gabriela, Serang Sarfaraz


Longitudinal, change, development, machine learning, mixture