Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Current opinion in ophthalmology

PURPOSE OF REVIEW : The purpose of this review is to describe the current status of automated deep learning in healthcare and to explore and detail the development of these models using commercially available platforms. We highlight key studies demonstrating the effectiveness of this technique and discuss current challenges and future directions of automated deep learning.

RECENT FINDINGS : There are several commercially available automated deep learning platforms. Although specific features differ between platforms, they utilise the common approach of supervised learning. Ophthalmology is an exemplar speciality in the area, with a number of recent proof-of-concept studies exploring classification of retinal fundus photographs, optical coherence tomography images and indocyanine green angiography images. Automated deep learning has also demonstrated impressive results in other specialities such as dermatology, radiology and histopathology.

SUMMARY : Automated deep learning allows users without coding expertise to develop deep learning algorithms. It is rapidly establishing itself as a valuable tool for those with limited technical experience. Despite residual challenges, it offers considerable potential in the future of patient management, clinical research and medical education.


O’Byrne Ciara, Abbas Abdallah, Korot Edward, Keane Pearse A