Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Circulation ; h5-index 165.0

Background: Late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) imaging is the gold standard for non-invasive myocardial tissue characterization, but requires intravenous contrast agent administration. It is highly desired to develop a contrast-agent-free technology to replace LGE for faster and cheaper CMR scans. Methods: A CMR Virtual Native Enhancement (VNE) imaging technology was developed using artificial intelligence. The deep learning model for generating VNE uses multiple streams of convolutional neural networks to exploit and enhance the existing signals in native T1-maps (pixel-wise maps of tissue T1 relaxation times) and cine imaging of cardiac structure and function, presenting them as LGE-equivalent images. The VNE generator was trained using generative adversarial networks. This technology was first developed on CMR datasets from the multi-center Hypertrophic Cardiomyopathy Registry (HCMR), using HCM as an exemplar. The datasets were randomized into two independent groups for deep learning training and testing. The test data of VNE and LGE were scored and contoured by experienced human operators to assess image quality, visuospatial agreement and myocardial lesion burden quantification. Image quality was compared using nonparametric Wilcoxon test. Intra- and inter-observer agreement was analyzed using intraclass correlation coefficients (ICC). Lesion quantification by VNE and LGE were compared using linear regression and ICC. Results: 1348 HCM patients provided 4093 triplets of matched T1-maps, cines, and LGE datasets. After randomization and data quality control, 2695 datasets were used for VNE method development, and 345 for independent testing. VNE had significantly better image quality than LGE, as assessed by 4 operators (n=345 datasets, p<0.001, Wilcoxon test). VNE revealed characteristic HCM lesions in high visuospatial agreement with LGE. In 121 patients (n=326 datasets), VNE correlated with LGE in detecting and quantifying both hyper-intensity myocardial lesions (r=0.77-0.79, ICC=0.77-0.87; p<0.001) and intermediate-intensity lesions (r=0.70-0.76, ICC=0.82-0.85; p<0.001). The native CMR images (cine plus T1-map) required for VNE can be acquired within 15 minutes. Producing a VNE image takes less than one second. Conclusions: VNE is a new CMR technology that resembles conventional LGE, without the need for contrast administration. VNE achieved high agreement with LGE in the distribution and quantification of lesions, with significantly better image quality.

Zhang Qiang, Burrage Matthew K, Lukaschuk Elena, Shanmuganathan Mayooran, Popescu Iulia A, Nikolaidou Chrysovalantou, Mills Rebecca, Werys Konrad, Hann Evan, Barutcu Ahmet, Polat Suleyman D, Salerno Michael, Jerosch-Herold Michael, Kwong Raymond Y, Watkins Hugh C, Kramer Christopher M, Neubauer Stefan, Ferreira Vanessa M, Piechnik Stefan K


Deep Learning Artificial Intelligence, Virtual Native Enhancement, contrast agent free