Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Abdominal radiology (New York)

Liver fibrosis features excessive protein accumulation in the liver interstitial space resulting from repeated tissue injury due to chronic liver disease. Liver fibrosis eventually proceeds to cirrhosis and associated complications. So, early diagnosis and staging of liver fibrosis are of vital importance for clinical treatment. Liver biopsy remains the gold standard for the diagnosing and staging of fibrosis, but it is suboptimal due to various limitations. Recently, efforts have been made to migrate toward noninvasive techniques for assessing liver fibrosis. CT is relatively easy to perform, relatively standardized for different scanners, and does not require additional hardware in liver fibrosis staging. MRI is frequently performed to characterize indeterminate liver lesions. Because it does not use ionizing radiation and features high image contrast, its role has increased in the staging of liver fibrosis. More recently, several studies on liver fibrosis staging using deep learning algorithms in CT or MRI have been proposed and have shown meaningful results. In this review, we summarize the basic concept, diagnostic performance, and advantages and limitations of each technique to noninvasively stage liver fibrosis.

Im Won Hyeong, Song Ji Soo, Jang Weon


Deep learning, Fibrosis, Liver cirrhosis, Magnetic resonance imaging, Quantitative imaging