Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Academic radiology

RATIONALE AND OBJECTIVES : High-resolution computed tomography (HRCT) is paramount in the assessment of interstitial lung disease (ILD). Yet, HRCT interpretation of ILDs may be hampered by inter- and intra-observer variability. Recently, artificial intelligence (AI) has revolutionized medical image analysis. This technology has the potential to advance patient care in ILD. We aimed to systematically evaluate the application of AI for the analysis of ILD in HRCT.

MATERIALS AND METHODS : We searched MEDLINE/PubMed databases for original publications of deep learning for ILD analysis on chest CT. The search included studies published up to March 1, 2021. The risk of bias evaluation included tailored Quality Assessment of Diagnostic Accuracy Studies and the modified Joanna Briggs Institute Critical Appraisal checklist.

RESULTS : Data was extracted from 19 retrospective studies. Deep learning techniques included detection, segmentation, and classification of ILD on HRCT. Most studies focused on the classification of ILD into different morphological patterns. Accuracies of 78%-91% were achieved. Two studies demonstrated near-expert performance for the diagnosis of idiopathic pulmonary fibrosis (IPF). The Quality Assessment of Diagnostic Accuracy Studies tool identified a high risk of bias in 15/19 (78.9%) of the studies.

CONCLUSION : AI has the potential to contribute to the radiologic diagnosis and classification of ILD. However, the accuracy performance is still not satisfactory, and research is limited by a small number of retrospective studies. Hence, the existing published data may not be sufficiently reliable. Only well-designed prospective controlled studies can accurately assess the value of existing AI tools for ILD evaluation.

Soffer Shelly, Morgenthau Adam S, Shimon Orit, Barash Yiftach, Konen Eli, Glicksberg Benjamin S, Klang Eyal

2021-Jul-01

Artificial Intelligence, Computed Tomography, Spiral, Deep Learning, Interstitial Lung Diseases, Neural Networks (Computer)