Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Frontiers in neuroscience ; h5-index 72.0

Although mounting neuroimaging studies have greatly improved our understanding of the neurobiological mechanism underlying internet addiction (IA), the results based on traditional group-level comparisons are insufficient in guiding individual clinical practice directly. Specific neuroimaging biomarkers are urgently needed for IA diagnosis and the evaluation of therapy efficacy. Therefore, this study aimed to develop support vector machine (SVM) models to identify IA and assess the efficacy of cognitive behavior therapy (CBT) based on unbiased functional connectivity density (FCD). Resting-state fMRI data were acquired from 27 individuals with IA before and after 8-week CBT sessions and 30 demographically matched healthy controls (HCs). The discriminative FCDs were computed as the features of the support vector classification (SVC) model to identify individuals with IA from HCs, and the changes in these discriminative FCDs after treatment were further used as features of the support vector regression (SVR) model to evaluate the efficacy of CBT. Based on the informative FCDs, our SVC model successfully differentiated individuals with IA from HCs with an accuracy of 82.5% and an area under the curve (AUC) of 0.91. Our SVR model successfully evaluated the efficacy of CBT using the FCD change ratio with a correlation efficient of 0.59. The brain regions contributing to IA classification and CBT efficacy assessment were the left inferior frontal cortex (IFC), middle frontal cortex (MFC) and angular gyrus (AG), the right premotor cortex (PMC) and middle cingulate cortex (MCC), and the bilateral cerebellum, orbitofrontal cortex (OFC) and superior frontal cortex (SFC). These findings confirmed the FCDs of hyperactive impulsive habit system, hypoactive reflecting system and sensitive interoceptive reward awareness system as potential neuroimaging biomarkers for IA, which might provide objective indexes for the diagnosis and efficacy evaluation of IA.

Wang Yang, Qin Yun, Li Hui, Yao Dezhong, Sun Bo, Gong Jinnan, Dai Yu, Wen Chao, Zhang Lingrui, Zhang Chenchen, Luo Cheng, Zhu Tianmin


biomarker, cognitive behavior therapy, internet addiction, support vector classification, support vector regression