Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Journal of pediatric gastroenterology and nutrition ; h5-index 50.0

BACKGROUND : Definitive non-invasive detection of pediatric choledocholithiasis could allow more efficient identification of those patients who are most likely to benefit from therapeutic endoscopic retrograde cholangiopancreatography (ERCP) for stone extraction.

OBJECTIVE : To craft a pediatric choledocholithiasis prediction model using a combination of commonly available serum laboratory values and ultrasound results.

METHODS : A retrospective review of laboratory and imaging results from 316 pediatric patients who underwent intraoperative cholangiogram or ERCP due to suspicion of choledocholithiasis were collected and compared to presence of common bile duct stones on cholangiography. Multivariate logistic regression with supervised machine learning was used to create a predictive scoring model. Monte-Carlo cross-validation was used to validate the scoring model and a score threshold that would provide at least 90% specificity for choledocholithiasis was determined in an effort to minimize non-therapeutic ERCP.

RESULTS : Alanine aminotransferase (ALT), total bilirubin, alkaline phosphatase, and common bile duct diameter via ultrasound were found to be the key clinical variables to determine the likelihood of choledocholithiasis. The dictated specificity threshold of 90.3% yielded a sensitivity of 40.8% and overall accuracy of 71.5% in detecting choledocholithiasis. Positive predictive value was 71.4% and negative predictive value was 72.1%.

CONCLUSION : Our novel pediatric choledocholithiasis predictive model is a highly specific tool to suggest ERCP in the setting of likely choledocholithiasis.

Cohen Reuven Zev, Tian Hongzhen, Sauer Cary G, Willingham Field F, Santore Matthew T, Mei Yajun, Freeman A Jay

2021-Jun-29