Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In European journal of sport science

We implemented a machine learning approach to investigate individual indicators of training load and wellness that may predict the emergence or development of overuse injuries in professional volleyball. In this retrospective study, we collected data of 14 elite volleyball players (mean ± SD age: 27 ± 3 years, weight: 90.5 ± 6.3 kg, height: 1.97 ± 0.07 m) during 24 weeks of the 2018 international season. Physical load was tracked by manually logging the performed physical activities and by capturing the jump load using wearable devices. On a daily basis, the athletes answered questions about their wellness, and overuse complaints were monitored via the Oslo Sports Trauma Research Center (OSTRC) questionnaire. Based on training load and wellness indicators, we identified subgroups of days with increased injury risk for each volleyball player using the machine learning technique Subgroup Discovery. For most players and facets of overuse injuries (such as reduced sports participation), we have identified personalized training load and wellness variables that are significantly related to overuse issues. We demonstrate that the emergence and development of overuse injuries can be better understood using daily monitoring, taking into account interactions between training load and wellness indicators, and by applying a personalized approach.

de Leeuw Arie-Willem, van der Zwaard Stephan, van Baar Rick, Knobbe Arno

2021-Feb-11

Injury, machine learning, personalization, training load, volleyball