Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Ultrasonic imaging

In this study, an automatic pennation angle measuring approach based on deep learning is proposed. Firstly, the Local Radon Transform (LRT) is used to detect the superficial and deep aponeuroses on the ultrasound image. Secondly, a reference line are introduced between the deep and superficial aponeuroses to assist the detection of the orientation of muscle fibers. The Deep Residual Networks (Resnets) are used to judge the relative orientation of the reference line and muscle fibers. Then, reference line is revised until the line is parallel to the orientation of the muscle fibers. Finally, the pennation angle is obtained according to the direction of the detected aponeuroses and the muscle fibers. The angle detected by our proposed method differs by about 1° from the angle manually labeled. With a CPU, the average inference time for a single image of the muscle fibers with the proposed method is around 1.6 s, compared to 0.47 s for one of the image of a sequential image sequence. Experimental results show that the proposed method can achieve accurate and robust measurements of pennation angle.

Zheng Weimin, Liu Shangkun, Chai Qing-Wei, Pan Jeng-Shyang, Chu Shu-Chuan

2021-Mar

Radon transform, deep residual networks, muscle fiber orientation, pennation angle, ultrasound image