Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Annals of translational medicine

Machine learning (ML), as an advanced domain of artificial intelligence (AI), is progressively changing our view of the world. By implementing its algorithms, our ability to detect previously undiscoverable patterns in data has the potential to revolutionize predictive analytics. Scoliosis, as a relatively specialized branch in the spine field, mainly covers the pediatric, adult and the elderly populations, and its diagnosis and treatment remain difficult. With recent efforts and interdisciplinary cooperation, ML has been widely applied to investigate issues related to scoliosis, and surprisingly augment a surgeon's ability in clinical practice related to scoliosis. Meanwhile, ML models penetrate in every stage of the clinical practice procedure of scoliosis. In this review, we first present a brief description of the application of ML in the clinical practice procedures regarding scoliosis, including screening, diagnosis and classification, surgical decision making, intraoperative manipulation, complication prediction, prognosis prediction and rehabilitation. Meanwhile, the ML models and specific applications adopted are presented. Additionally, current limitations and future directions are briefly discussed regarding its use in the field of scoliosis. We believe that the implementation of ML is a promising revolution to assist surgeons in all aspects of clinical practice related to scoliosis in the near future.

Chen Kai, Zhai Xiao, Sun Kaiqiang, Wang Haojue, Yang Changwei, Li Ming

2021-Jan

Scoliosis, clinical practice, machine learning (ML), revolution