Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Cytometry. Part A : the journal of the International Society for Analytical Cytology

Structured illumination microscopy (SIM) is widely used in biological imaging for its high resolution, fast imaging speed and simple optical setup. However, when imaging thick samples, the structured illumination patterns in SIM will suffer from optical aberrations, leading to a serious deterioration in resolution. Therefore, it is necessary to reconstruct structured illumination patterns with high quality and efficiency in deep tissue imaging. Here we demonstrate an adaptive optics (AO) correction method based on deep learning in wide-field SIM imaging system. The mapping between the coefficients of the first 15 Zernike modes and their corresponding distorted patterns is established to train the convolution neural network (CNN). The results show that the optimized CNN can predict the aberration phase within ~10.1ms with a personal computer. The correlation index between the aberration phases and their corresponding predicted aberration phase is up to 0.9986. This method is highly robust and effective for patterns with various spatial densities and illumination conditions and able to effectively correct the imaging distortion caused by optical aberration in SIM system.

Zheng Yao, Chen Jiajia, Wu Chenxue, Gong Wei, Si Ke


adaptive optics, convolution neural network, deep learning, structured illumination microscopy]