Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Ophthalmology. Retina

PURPOSE : To develop a deep-learning (DL) system that can detect referable and vision-threatening diabetic retinopathy (RDR and VTDR) from images obtained on ultra-wide field scanning laser ophthalmoscope (UWF-SLO).

DESIGN : Observational, cross-sectional study.

SUBJECTS : A total of 9392 UWF-SLO images of 1903 eyes from 1022 subjects with diabetes from Hong Kong, the UK, India, and Argentina.

METHODS : All images were labeled according to the presence or absence of RDR and the presence or absence of VTDR. Labeling was performed by retina specialists from fundus examination, according to the International Clinical Diabetic Retinopathy Disease Severity Scale. Three convolutional neural networks (ResNet50) were trained with transfer-learning procedure for assessing gradability and identifying VTDR and RDR. External validation was performed on four datasets spanning different geographical regions.

MAIN OUTCOME MEASURES : Area under the receiver operating characteristic curve (AUROC), area under the precision-recall curves (AUPRC), sensitivity, specificity, and accuracy of the DL system in gradability assessment and detection of RDR and VTDR.

RESULTS : For gradability assessment, the system achieved an AUROC of 0.923 (95% CI, 0.892-0.947), sensitivity of 86.5% (77.6-92.8) and specificity of 82.1% (77.3-86.2) for the primary validation dataset, and >0.82 AUROCs, >79.6% sensitivity and >70.4% specificity for the geographical external validation datasets. For detecting RDR and VTDR, the AUROCs were 0.981 (0.977-0.984) and 0.966 (0.961-0.971), with sensitivities of 94.9% (92.3-97.9) and 87.2% (81.5-91.6), specificities of 95.1% (90.6-97.9) and 95.8% (93.3-97.6), and positive predictive values (PPVs) of 98.0% (96.1-99.0) and 91.1% (86.3-94.3) for the primary validation dataset. The AUROCs and accuracies for detecting both RDR and VTDR were >0.9 and >80% for the geographical external validation datasets. In addition, the AUPRCs were >0.9, and sensitivities, specificities, and PPVs were >80% for the geographical external validation datasets for RDR and VTDR detection.

CONCLUSION : The excellent performance achieved with this DL system for automated image quality assessment and detection of RDR and VTDR in UWF-SLO images highlights its potential as an efficient and effective diabetic retinopathy screening tool.

Tang Fangyao, Luenam Phoomraphee, Ran An Ran, Quadeer Ahmed Abdul, Raman Rajiv, Sen Piyali, Khan Rehana, Giridhar Anantharaman, Haridas Swathy, Iglicki Matias, Zur Dinah, Loewenstein Anat, Negri Hermino P, Szeto Simon, Yau Lam Bryce Ka, Tham Clement C, Sivaprasad Sobha, Mckay Matthew, Cheung Carol Y