Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Cancers

The management of prostate cancer (PCa) is dependent on biomarkers of biological aggression. This includes an invasive biopsy to facilitate a histopathological assessment of the tumor's grade. This review explores the technical processes of applying magnetic resonance imaging based radiomic models to the evaluation of PCa. By exploring how a deep radiomics approach further optimizes the prediction of a PCa's grade group, it will be clear how this integration of artificial intelligence mitigates existing major technological challenges faced by a traditional radiomic model: image acquisition, small data sets, image processing, labeling/segmentation, informative features, predicting molecular features and incorporating predictive models. Other potential impacts of artificial intelligence on the personalized treatment of PCa will also be discussed. The role of deep radiomics analysis-a deep texture analysis, which extracts features from convolutional neural networks layers, will be highlighted. Existing clinical work and upcoming clinical trials will be reviewed, directing investigators to pertinent future directions in the field. For future progress to result in clinical translation, the field will likely require multi-institutional collaboration in producing prospectively populated and expertly labeled imaging libraries.

Chaddad Ahmad, Kucharczyk Michael J, Cheddad Abbas, Clarke Sharon E, Hassan Lama, Ding Shuxue, Rathore Saima, Zhang Mingli, Katib Yousef, Bahoric Boris, Abikhzer Gad, Probst Stephan, Niazi Tamim

2021-Feb-01

Gleason score, artificial intelligence, magnetic resonance imaging, prostate cancer, radiogenomics, radiomics