Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Journal of the American Medical Informatics Association : JAMIA

OBJECTIVE : To demonstrate enabling multi-institutional training without centralizing or sharing the underlying physical data via federated learning (FL).

MATERIALS AND METHODS : Deep learning models were trained at each participating institution using local clinical data, and an additional model was trained using FL across all of the institutions.

RESULTS : We found that the FL model exhibited superior performance and generalizability to the models trained at single institutions, with an overall performance level that was significantly better than that of any of the institutional models alone when evaluated on held-out test sets from each institution and an outside challenge dataset.

DISCUSSION : The power of FL was successfully demonstrated across 3 academic institutions while avoiding the privacy risk associated with the transfer and pooling of patient data.

CONCLUSION : Federated learning is an effective methodology that merits further study to enable accelerated development of models across institutions, enabling greater generalizability in clinical use.

Sarma Karthik V, Harmon Stephanie, Sanford Thomas, Roth Holger R, Xu Ziyue, Tetreault Jesse, Xu Daguang, Flores Mona G, Raman Alex G, Kulkarni Rushikesh, Wood Bradford J, Choyke Peter L, Priester Alan M, Marks Leonard S, Raman Steven S, Enzmann Dieter, Turkbey Baris, Speier William, Arnold Corey W


deep learning, federated learning, generalizability, privacy, prostate