Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Diagnostic and prognostic research

BACKGROUND : The methods with which prediction models are usually developed mean that neither the parameters nor the predictions should be interpreted causally. For many applications, this is perfectly acceptable. However, when prediction models are used to support decision making, there is often a need for predicting outcomes under hypothetical interventions.

AIMS : We aimed to identify published methods for developing and validating prediction models that enable risk estimation of outcomes under hypothetical interventions, utilizing causal inference. We aimed to identify the main methodological approaches, their underlying assumptions, targeted estimands, and potential pitfalls and challenges with using the method. Finally, we aimed to highlight unresolved methodological challenges.

METHODS : We systematically reviewed literature published by December 2019, considering papers in the health domain that used causal considerations to enable prediction models to be used for predictions under hypothetical interventions. We included both methodologies proposed in statistical/machine learning literature and methodologies used in applied studies.

RESULTS : We identified 4919 papers through database searches and a further 115 papers through manual searches. Of these, 87 papers were retained for full-text screening, of which 13 were selected for inclusion. We found papers from both the statistical and the machine learning literature. Most of the identified methods for causal inference from observational data were based on marginal structural models and g-estimation.

CONCLUSIONS : There exist two broad methodological approaches for allowing prediction under hypothetical intervention into clinical prediction models: (1) enriching prediction models derived from observational studies with estimated causal effects from clinical trials and meta-analyses and (2) estimating prediction models and causal effects directly from observational data. These methods require extending to dynamic treatment regimes, and consideration of multiple interventions to operationalise a clinical decision support system. Techniques for validating 'causal prediction models' are still in their infancy.

Lin Lijing, Sperrin Matthew, Jenkins David A, Martin Glen P, Peek Niels


Causal inference, Clinical prediction models, Counterfactual prediction, Statistical modeling