Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Bioinformatics (Oxford, England)

MOTIVATION : Hematopoietic stem cells (HSCs) give rise to all blood cells and play a vital role throughout the whole lifespan through their pluripotency and self-renewal properties. Accurately identifying the stages of early HSCs is extremely important, as it may open up new prospects for extracorporeal blood research. Existing experimental techniques for identifying the early stages of HSCs development are time-consuming and expensive. Machine learning has shown its excellence in massive single-cell data processing and it is desirable to develop related computational models as good complements to experimental techniques.

RESULTS : In this study, we presented a novel predictor called eHSCPr specifically for predicting the early stages of HSCs development. To reveal the distinct genes at each developmental stage of HSCs, we compared F-score with three state-of-art differential gene selection methods (limma, DESeq2, edgeR) and evaluated their performance. F-score captured the more critical surface markers of endothelial cells and hematopoietic cells, and the area under receiver operating characteristic curve (ROC) value was 0.987. Based on SVM, the 10-fold cross-validation accuracy of eHSCpr in the independent dataset and the training dataset reached 94.84% and 94.19%, respectively. Importantly, we performed transcription analysis on the F-score gene set, which indeed further enriched the signal markers of HSCs development stages. eHSCPr can be a powerful tool for predicting early stages of HSCs development, facilitating hypothesis-driven experimental design and providing crucial clues for the in vitro blood regeneration studies.

AVAILABILITY : http://bioinfor.imu.edu.cn/ehscpr.

SUPPLEMENTARY INFORMATION : Supplementary data are available at Bioinformatics online.

Wang Hao, Liang Pengfei, Zheng Lei, Long ChunShen, Li HanShuang, Zuo Yongchun

2021-Feb-03