Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Nature nanotechnology ; h5-index 160.0

The quest to implement machine learning algorithms in hardware has focused on combining various materials, each mimicking a computational primitive, to create device functionality. Ultimately, these piecewise approaches limit functionality and efficiency, while complicating scaling and on-chip learning, necessitating new approaches linking physical phenomena to machine learning models. Here, we create an atomic spin system that emulates a Boltzmann machine directly in the orbital dynamics of one well-defined material system. Utilizing the concept of orbital memory based on individual cobalt atoms on black phosphorus, we fabricate the prerequisite tuneable multi-well energy landscape by gating patterned atomic ensembles using scanning tunnelling microscopy. Exploiting the anisotropic behaviour of black phosphorus, we realize plasticity with multi-valued and interlinking synapses that lead to tuneable probability distributions. Furthermore, we observe an autonomous reorganization of the synaptic weights in response to external electrical stimuli, which evolves at a different time scale compared to neural dynamics. This self-adaptive architecture paves the way for autonomous learning directly in atomic-scale machine learning hardware.

Kiraly Brian, Knol Elze J, van Weerdenburg Werner M J, Kappen Hilbert J, Khajetoorians Alexander A