Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Scientific reports ; h5-index 158.0

In the last decade there has been an exponential growth of research activity on the identification of correlations between vegetational indices elaborated by UAV imagery and productive and vegetative parameters of the vine. However, the acquisition and analysis of spectral data require costs and skills that are often not sufficiently available. In this context, the identification of geometric indices that allow the monitoring of spatial variability with low-cost instruments, without spectral analysis know-how but based on photogrammetry techniques with high-resolution RGB cameras, becomes extremely interesting. The aim of this work was to evaluate the potential of new canopy geometry-based indices for the characterization of vegetative and productive agronomic parameters compared to traditional NDVI based on spectral response of the canopy top. Furthermore, considering grape production as a key parameter directly linked to the economic profit of farmers, this study provides a deeper analysis focused on the development of a rapid yield forecast methodology based on UAV data, evaluating both traditional linear and machine learning regressions. Among the yield assessment models, one of the best results was obtained with the canopy thickness which showed high performance with the Gaussian process regression models (R2 = 0.80), while the yield prediction average accuracy of the best ML models reached 85.95%. The final results obtained confirm the feasibility of this research as a global yield model, which provided good performance through an accurate validation step realized in different years and different vineyards.

Matese Alessandro, Di Gennaro Salvatore Filippo

2021-Feb-01