Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Laboratory investigation; a journal of technical methods and pathology ; h5-index 42.0

Cervical cancer is one of the most frequent cancers in women worldwide, yet the early detection and treatment of lesions via regular cervical screening have led to a drastic reduction in the mortality rate. However, the routine examination of screening as a regular health checkup of women is characterized as time-consuming and labor-intensive, while there is lack of characteristic phenotypic profile and quantitative analysis. In this research, over the analysis of a privately collected and manually annotated dataset of 130 cytological whole-slide images, the authors proposed a deep-learning diagnostic system to localize, grade, and quantify squamous cell abnormalities. The system can distinguish abnormalities at the morphology level, namely atypical squamous cells of undetermined significance, low-grade squamous intraepithelial lesion, high-grade squamous intraepithelial lesion, and squamous cell carcinoma, as well as differential phenotypes of normal cells. The case study covered 51 positive and 79 negative digital gynecologic cytology slides collected from 2016 to 2018. Our automatic diagnostic system demonstrated its sensitivity of 100% at slide-level abnormality prediction, with the confirmation with three pathologists who performed slide-level diagnosis and training sample annotations. In the cellular-level classification, we yielded an accuracy of 94.5% in the binary classification between normality and abnormality, and the AUC was above 85% for each subtype of epithelial abnormality. Although the final confirmation from pathologists is often a must, empirically, computer-aided methods are capable of the effective extraction, interpretation, and quantification of morphological features, while also making it more objective and reproducible.

Ke Jing, Shen Yiqing, Lu Yizhou, Deng Junwei, Wright Jason D, Zhang Yan, Huang Qin, Wang Dadong, Jing Naifeng, Liang Xiaoyao, Jiang Fusong

2021-Feb-01