Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan

Industrial reforms utilizing artificial intelligence (AI) have advanced remarkably in recent years. The application of AI to big data analysis in the medical information field has also been advancing and is expected to be used to find drug adverse effects that cannot be predicted by conventional methods. We have developed an adverse drug reactions analysis system that uses machine learning and data from the Japanese Adverse Drug Event Report (JADER) database. The system was developed using the C# programming language and incorporates the open source machine learning library Accord.Net. Potential analytical capabilities of the system include discovering unknown drug adverse effects and evaluating drug-induced adverse events in pharmaceutical management. However, to apply the system to pharmaceutical management, it is important to examine the characteristics and suitability of the level of AI used in the system and to select statistical methods or machine learning when appropriate. If these points are addressed, there is potential for pharmaceutical management to be individualized and optimized in the clinical setting by using the developed system to analyze big data. The system also has the potential to allow individual healthcare facilities such as hospitals and pharmacies to contribute to drug repositioning, including the discovery of new efficacies, interactions, and drug adverse events.

Kiryu Yoshihiro

2021

adverse effect, clinical pharmacy information system, database, machine learning, medical informatics computing