Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Translational vision science & technology

Purpose : To assess whether age can be predicted from deep learning analysis of peripapillary spectral-domain optical coherence tomography (SD-OCT) B-scans and to determine the importance of specific retinal areas on the predictions.

Methods : Deep learning (DL) convolutional neural networks were developed to predict chronological age in healthy subjects using peripapillary SD-OCT B-scan images. Models were built using the whole B-scan, as well as using specific regions through image ablation. Cross-validation was used for training and testing the model. Mean absolute error (MAE) and correlations between predicted and observed age were used to evaluate model performance.

Results : A total of 7271 images from 542 eyes of 278 healthy subjects were included. DL predictions of age using the whole B-scan were strongly correlated with chronological age (MAE = 5.82 years; r = 0.860, P < 0.001). The model also accurately discriminated between the lowest and highest tertiles of age, with an area under the receiver operating characteristic curve of 0.962. In general, class activation maps tended to show a diffuse pattern of activation throughout the scan image. For specific structures of the B-scan, the layers with the strongest correlations with chronological age were the choroid and vitreous (both r = 0.736), whereas retinal nerve fiber layer had the lowest correlation (r = 0.492).

Conclusions : A DL algorithm was able to accurately predict age from whole peripapillary SD-OCT B-scans.

Translational Relevance : DL models applied to SD-OCT scans suggest that aging appears to affect several layers in the posterior eye segment.

Shigueoka Leonardo S, Mariottoni Eduardo B, Thompson Atalie C, Jammal Alessandro A, Costa Vital P, Medeiros Felipe A


aging, artificial intelligence, deep learning, optical tomography coherence, posterior eye segment