Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In International journal of computer assisted radiology and surgery

PURPOSE : Grinding trajectory planning for robot-assisted laminectomy is a complicated and cumbersome task. The purpose of this research is to automatically obtain the surgical target area from the CT image, and based on this, formulate a reasonable robotic grinding trajectory.

METHODS : We propose a deep neural network for laminae positioning, a trajectory generation strategy, and a grinding speed adjusting strategy. These algorithms can obtain surgical information from CT images and automatically complete grinding trajectory planning.

RESULTS : The proposed laminae positioning network can reach a recognition accuracy of 95.7%, and the positioning error is only 1.12 mm in the desired direction. The simulated surgical planning on the public dataset has achieved the expected results. In a set of comparative robotic grinding experiments, those using the speed adjustment algorithm obtained a smoother grinding force.

CONCLUSION : Our work can automatically extract laminar centers from the CT image precisely to formulate a reasonable surgical trajectory plan. It simplifies the surgical planning process and reduces the time needed for surgeons to perform such a cumbersome operation manually.

Li Qian, Du Zhijiang, Yu Hongjian


Deep learning, Image-guided surgery, Laminectomy, Surgical planning