Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Military medicine

INTRODUCTION : The ability to accurately detect hypotension in trauma patients at the earliest possible time is important in improving trauma outcomes. The earlier an accurate detection can be made, the more time is available to take corrective action. Currently, there is limited research on combining multiple physiological signals for an early detection of hemorrhagic shock. We studied the viability of early detection of hypotension based on multiple physiologic signals and machine learning methods. We explored proof of concept with a small (5 minutes) prediction window for application of machine learning tools and multiple physiologic signals to detecting hypotension.

MATERIALS AND METHODS : Multivariate physiological signals from a preexisting dataset generated by an experimental hemorrhage model were employed. These experiments were conducted previously by another research group and the data made available publicly through a web portal. This dataset is among the few publicly available which incorporate measurement of multiple physiological signals from large animals during experimental hemorrhage. The data included two hemorrhage studies involving eight sheep. Supervised machine learning experiments were conducted in order to develop deep learning (viz., long short-term memory or LSTM), ensemble learning (viz., random forest), and classical learning (viz., support vector machine or SVM) models for the identification of physiological signals that can detect whether or not overall blood loss exceeds a predefined threshold 5 minutes ahead of time. To evaluate the performance of the machine learning technologies, 3-fold cross-validation was conducted and precision (also called positive predictive value) and recall (also called sensitivity) values were compared. As a first step in this development process, 5 minutes prediction windows were utilized.

RESULTS : The results showed that SVM and random forest outperform LSTM neural networks, likely because LSTM tends to overfit the data on small sized datasets. Random forest has the highest recall (84%) with 56% precision while SVM has 62% recall with 82% precision. Upon analyzing the feature importance, it was observed that electrocardiogram has the highest significance while arterial blood pressure has the least importance among all other signals.

CONCLUSION : In this research, we explored the viability of early detection of hypotension based on multiple signals in a preexisting animal hemorrhage dataset. The results show that a multivariate approach might be more effective than univariate approaches for this detection task.

Rashedi Navid, Sun Yifei, Vaze Vikrant, Shah Parikshit, Halter Ryan, Elliott Jonathan T, Paradis Norman A