Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

ArXiv Preprint

Atrial Fibrillation (AF) is a common cardiac arrhythmia affecting a large number of people around the world. If left undetected, it will develop into chronic disability or even early mortality. However, patients who have this problem can barely feel its presence, especially in its early stage. A non-invasive, automatic, and effective detection method is therefore needed to help early detection so that medical intervention can be implemented in time to prevent its progression. Electrocardiogram (ECG), which records the electrical activities of the heart, has been widely used for detecting the presence of AF. However, due to the subtle patterns of AF, the performance of detection models have largely depended on complicated data pre-processing and expertly engineered features. In our work, we developed DenseECG, an end-to-end model based on 5 layers 1D densely connected convolutional neural network. We trained our model using the publicly available dataset from 2017 PhysioNet Computing in Cardiology(CinC) Challenge containing 8528 single-lead ECG recordings of short-term heart rhythms (9-61s). Our trained model was able to outperform the other state-of-the-art AF detection models on this dataset without complicated data pre-processing and expert-supervised feature engineering.

Dacheng Chen, Dan Li, Xiuqin Xu, Ruizhi Yang, See-Kiong Ng

2021-01-19