Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In IEEE journal of biomedical and health informatics

A computational model with intelligent machine learning for analysis of epidemiological data, is proposed. The innovations of adopted methodology consist of an interval type-2 fuzzy clustering algorithm based on adaptive similarity distance mechanism for defining specific operation regions associated to the behavior and uncertainty inherited to epidemiological data, and an interval type-2 fuzzy version of Observer/Kalman Filter Identification (OKID) algorithm for adaptive tracking and real time forecasting according to unobservable components computed by recursive spectral decomposition of experimental epidemiological data. Experimental results and comparative analysis illustrate the efficiency and applicability of proposed methodology for adaptive tracking and real time forecasting the dynamic propagation behavior of novel coronavirus 2019 (COVID-19) outbreak in Brazil.

Serra Ginalber L O, Gomes Daiana Caroline Dos Santos