Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In European radiology ; h5-index 62.0

OBJECTIVE : The aim of this study was (1) to investigate the application of texture analysis of choline PET/CT images in prostate cancer (PCa) patients and (2) to propose a machine-learning radiomics model able to select PET features predictive of disease progression in PCa patients with a same high-risk class at restaging.

MATERIAL AND METHODS : Ninety-four high-risk PCa patients who underwent restaging Cho-PET/CT were analyzed. Follow-up data were recorded for a minimum of 13 months after the PET/CT scan. PET images were imported in LIFEx toolbox to extract 51 features from each lesion. A statistical system based on correlation matrix and point-biserial-correlation coefficient has been implemented for features reduction and selection, while Discriminant analysis (DA) was used as a method for features classification in a whole sample and sub-groups for primary tumor or local relapse (T), nodal disease (N), and metastatic disease (M).

RESULTS : In the whole group, 2 feature (HISTO_Entropy_log10; HISTO_Energy_Uniformity) results were able to discriminate the occurrence of disease progression at follow-up, obtaining the best performance in DA classification (sensitivity 47.1%, specificity 76.5%, positive predictive value (PPV) 46.7%, and accuracy 67.6%). In the sub-group analysis, the best performance in DA classification for T was obtained by selecting 3 features (SUVmin; SHAPE_Sphericity; GLCM_Correlation) with a sensitivity of 91.6%, specificity 84.1%, PPV 79.1%, and accuracy 87%; for N by selecting 2 features (HISTO = _Energy Uniformity; GLZLM_SZLGE) with a sensitivity of 68.1%, specificity 91.4%, PPV 83%, and accuracy 82.6%; and for M by selecting 2 features (HISTO_Entropy_log10 - HISTO_Entropy_log2) with a sensitivity 64.4%, specificity 74.6%, PPV 40.6%, and accuracy 72.5%.

CONCLUSION : This machine learning model demonstrated to be feasible and useful to select Cho-PET features for T, N, and M with valuable association with high-risk PCa patients' outcomes.

KEY POINTS : • Artificial intelligence applications are feasible and useful to select Cho-PET features. • Our model demonstrated the presence of specific features for T, N, and M with valuable association with high-risk PCa patients' outcomes. • Further prospective studies are necessary to confirm our results and to develop the application of artificial intelligence in PET imaging of PCa.

Alongi Pierpaolo, Stefano Alessandro, Comelli Albert, Laudicella Riccardo, Scalisi Salvatore, Arnone Giuseppe, Barone Stefano, Spada Massimiliano, Purpura Pierpaolo, Bartolotta Tommaso Vincenzo, Midiri Massimo, Lagalla Roberto, Russo Giorgio

2021-Jan-14

Choline, Machine learning, Positron emission tomography computed tomography, Prostate cancer, Radiomics