Receive a weekly summary and discussion of the top papers of the week by leading researchers in the field.

In Proceedings of the National Academy of Sciences of the United States of America

Many materials, processes, and structures in science and engineering have important features at multiple scales of time and/or space; examples include biological tissues, active matter, oceans, networks, and images. Explicitly extracting, describing, and defining such features are difficult tasks, at least in part because each system has a unique set of features. Here, we introduce an analysis method that, given a set of observations, discovers an energetic hierarchy of structures localized in scale and space. We call the resulting basis vectors a "data-driven wavelet decomposition." We show that this decomposition reflects the inherent structure of the dataset it acts on, whether it has no structure, structure dominated by a single scale, or structure on a hierarchy of scales. In particular, when applied to turbulence-a high-dimensional, nonlinear, multiscale process-the method reveals self-similar structure over a wide range of spatial scales, providing direct, model-free evidence for a century-old phenomenological picture of turbulence. This approach is a starting point for the characterization of localized hierarchical structures in multiscale systems, which we may think of as the building blocks of these systems.

Floryan Daniel, Graham Michael D


data-driven decomposition, machine learning, multiscale, turbulence, wavelet